Calculation of the amplitude matrix for a nonspherical

particle in a fixed orientation

Michael I. Mishchenko

General equations are derived for computing the amplitude matrix for a nonspherical particle in an
arbitrary orientation and for arbitrary illumination and scattering directions with respect to the labo-
ratory reference frame, provided that the scattering problem can be solved with respect to the particle

reference frame.

results for homogeneous, dielectric, rotationally symmetric particles.

These equations are used along with the 7T-matrix method to provide benchmark

The computer code is publicly

available on the World-Wide Web at http://www.giss.nasa.gov/~crmim.

OCIS codes:

1. Introduction

Many practical applications require the knowledge of
electromagnetic scattering characteristics of per-
fectly or partially oriented nonspherical particles for
arbitrary directions of the incident and scattered
beams. Most of the available analytical and numer-
ical techniques assume that (or become especially
efficient when) the scattering problem is solved in the
particle reference frame with coordinate axes di-
rected along the axes of particle symmetry.! How-
ever, it is often necessary to use a fixed laboratory
coordinate system to specify both the directions of the
incident and scattered beams and the particle orien-
tation, for example, for solving the vector radiative
transfer equation for preferentially oriented non-
spherical particles such as hydrometeors and inter-
stellar dust grains.2-4 In this case one has first to
determine the illumination and scattering directions
with respect to the particle reference frame for a
given orientation of the particle relative to the labo-
ratory reference frame, then solve the scattering
problem in the particle reference frame, and finally
perform the backward transition to the laboratory
reference frame. In this paper we shall derive gen-
eral formulas that describe this procedure and use
them along with the T-matrix method to provide
benchmark results that could be useful for testing
purposes. Unlike in Refs. 5 and 6, we shall permit
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arbitrary directions of the incident and scattered
beams with respect to the laboratory reference frame
rather than assume that the illumination direction is
along the positive z axis and that the scattering di-
rection is confined to the xz plane.

2. Reference Frames and Particle Orientation

To describe the scattering of a plane electromagnetic
wave by a nonspherical particle in an arbitrary ori-
entation, one must first specify the directions of the
incident and scattered waves and the orientation of
the particle with respect to a laboratory reference
frame. Let this reference frame be a right-handed
Cartesian coordinate system L with orientation fixed
in space, having its origin inside the particle. The
direction of propagation of a transverse electromag-
netic wave is specified by a unit vector 7 or, equiva-
lently, by a couple (¥, ¢;), where ¥; €[0,7] is the
polar (zenith) angle measured from the positive z axis
and ¢; €[0,27] is the azimuth angle measured from
the positive x axis in the clockwise sense, when one is
looking in the direction of the positive z axis (Fig. 1).
The ¥ and ¢ components of the electric field are de-
noted Ey;, and E_;, respectively. The component
E;; = Eg 97 lies in the meridional plane (plane
through the beam and the z axis), whereas the com-
ponent E_; = E_; ¢, is perpendicular to this plane,
where V;, and §; are the corresponding unit vectors
such that

ﬂ = SL X (F\)L' (1)

Note that E;;, and E_;, are also often denoted E, and
E,, and called the vertical and horizontal electric field
vector components, respectively.2
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Fig. 1. Spherical coordinate system used to specify the direction
and the polarization state of a transverse electromagnetic wave.

To specify the orientation of the particle with re-
spect to the laboratory reference frame, we introduce
a right-handed coordinate system P fixed to the par-
ticle and having the same origin as L. This coordi-
nate system will be called the particle reference
frame. The orientation of the particle with respect
to the laboratory frame, L, is specified by three Euler
angles of rotation, o, B, and v, that transform the
coordinate system L{x,y,z} into the coordinate system
P{x'y’',z'}, as shown in Fig. 2 (Chap. 1 of Ref. 1 and
Ref. 7). The three consecutive Euler rotations are
performed as follows:

¢ Rotation about the z axis through an angle a €
[0,27), reorienting the y axis such that it coincides

line of nodes

Fig. 2. Transformation of the laboratory reference system xyz
into the particle reference frame x'y’z’.

with the line of nodes (line formed by the intersection
of the xy and x'y’ planes),

¢ Rotation about the new y axis through an angle
B € [0,m],

¢ Rotation about the z' axis through an angle y €
[0,2m).

An angle of rotation is positive if the rotation is in the
clockwise direction when one is looking in the positive
direction of the rotation axis.

3. Amplitude Matrix in the Laboratory Reference
Frame

Throughout this paper we assume and suppress the
time-harmonic factor exp(—iwt). Consider a mono-
chromatic plane electromagnetic wave with electric
field vector

E™R) = (07" + E5¢rexp(ki™R)  (2)

incident upon a nonspherical particle in a direction
A% herei = V—1, B = 2w/\ is the free-space wave
number, \ is the free-space wavelength, R is the po-
sition vector connecting the origin of the laboratory
coordinate system and the observation point, and the
subscript L labels vector components computed in the
laboratory reference frame. Because of the linearity
of Maxwell’s equations and boundary conditions, it is
always possible to express the scattered electric field
linearly in the incident electric field. In the far-field
region (kR >> 1, R = |R|), the scattered wave becomes
spherical and is given by?2

E“(R) = E52(RA™)05" + B (R A,

Asca __ E _ ,ssca X psea (3)
n R L ¢,
Asea. Esca(R) =0, 4)
Wl o
exp(ikR i
sca | — L SL(ﬂsca’ ﬁmc; a, Ba ‘Y) inc | » 5)
¢L R ok

where S is a 2 X 2 amplitude matrix that transforms
the electric field vector components of the incident
wave into the electric field vector components of the
scattered wave in the laboratory reference frame.
The amplitude matrix depends on the directions of
incidence and scattering as well as on the size, mor-
phology, and composition of the scattering particle
and on its orientation with respect to the laboratory
reference frame as specified by the Euler angles of
rotation «, B, and .

4. Reference Frame Transformations

Assume that one can use one of the available analyt-
ical or numerical techniques (e.g., in Chap. 2 of Ref. 1)
to find the amplitude matrix with respect to the par-
ticle reference frame. This matrix will be denoted
S and relates the incident and scattered field vector
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components computed in the particle reference
frame:

{ “’P} =@ ©6)

P Asca Alnc

' S (s {34-
The amplitude matrix with respect to the laboratory
reference frame can be expressed in terms of the
matrix S” as follows: Denote by p a 2 X 2 matrix
that transforms the electric field vector components
of a transverse electromagnetic wave computed in the
laboratory reference frame into those computed in
the particle reference frame:

ﬂP(ﬁP, ‘PP) EﬂL(ﬁL, ‘-PL)
[ in(ﬂP; ‘PP):| p(E; o, B, y)[ ¢L(8L, cPL)] (D)

where 7i is a unit vector in the direction of light prop-
agation, whereas (97, ¢;) and (Op, ¢p) specify this
direction with respect to the laboratory and particle
reference frames, respectively. The p matrix de-

and by B a 3 X 3 matrix that expresses the «x, y, and
z components of a vector in the particle coordinate
system in the x, y, and z components of the same
vector in the laboratory coordinate system:

ExP ExL
yP - (OL By "/) (13)
EzP EzL

We then finally have

f)(ﬁﬁ Q, B"Y ) = é\1~7].(ﬁ&P’ ‘PP)B(OL, B’ 'y)&(ﬁL’ ‘PL)
(14)

The matrices that enter the right-hand side of Eq.
(14) are as follows™:

cos a oS B cos y — sin « sin vy
—cos a €cos B sin y — sin « cos y
cos a sin 3

Bla, B, y) =

cos U cos ¢ —sin @
&y, @) =|cos¥sine cose¢ |, (15)
—sin ¥ 0
. cos ¥ cos ¢ cos ¥ sin —sin ¥
a9, ) = o ¢ ® , (16)
sin @ cos @ 0
sinacos Bcosy +cosasiny —sin 3 cosy
—sinacos Bsiny + cosacosy sin B sinvy amn
sin « sin 3 cos f3

pends on 7 as well as on the orientation of the particle
relative to the laboratory reference frame, as given by
Euler angles a, 3, and y. We can then easily derive

SEOL™, @15 L, oL &, Byy) = p 1 (A™ o, B, )
X ST(OF", @™ 95, @FIPA™; o, B, y).  (8)

Angles 9 and ¢p are expressed in terms of angles V;,
and ¢; as

cos Up = cos Uy cos B + sin ¥z sin B cos(p; — o),

COSQPp = —; [cos B cos vy sin ¥, cos(o, — @)
sinVp
+ sin v sin Yy, sin(¢;, — o)
— sin B cos y cos 9], (10)
singp = [—cos B sin y sin ¥, cos(g; — )

sinVp
+ cos v sin V7, sin(e;, — a)
+ sin B sin v cos ¥ ]. (11)

To determine the p matrix, we proceed as follows:
Denote by & a 3 X 2 matrix that transforms the ¥ and
¢ components of the electric field vector into its x, ¥,
and z components:

E

x ) E
Ey = ()L(ﬁ, (P)|:Ea:| ’
E, ¢

(12)
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One can easily verify that, if the particle reference
frame coincides with the laboratory reference frame,
then

bz =0.6-0,v=0=|g 3. as)

SE(OL?, @1 O, €1 0, 0, 0) = ST(VF, @5 95, ¢5°).

(19)

For rotationally symmetric particles it is advanta-
geous to choose the particle coordinate system such
that its z axis is directed along the axis of particle
symmetry. In this case the orientation of the parti-
cle with respect to the laboratory coordinate system is
independent of Euler angle v, so we can set y = 0 and
get, instead of Eqgs. (10), (11), and (17),

cos @p = [cos B sin ¥, cos(¢o, — )
sin ’BP
— sin 8 cos V7], (20)
sin 9, sin(e;, —
sin gp = 2 u sinle — @) 21)
sin Up
cosacosB sinacosB —sinf
Bla,B,y=0)=| -sina cos a 0
cosasinp sinasinf cosP
(22)



5. Amplitude Matrix in the Particle Reference Frame

It is rather convenient to compute the amplitude ma-
trix with respect to the particle reference frame by
using the T-matrix method®® because, for rotation-
ally symmetric particles, the 7' matrix is diagonal
with respect to the azimuthal indices m and m':

7"]rerfnm’n'(P) = 8mrrL’T#rerfnmn’(P)7 k7 Z = 17 27 (23)

where §,,,,. is the Kronecker delta. We therefore

have
® % min(n,n’)
's3 3

'=1 m=-min(n,n')

Sfl(ﬁsca’ ﬁinc) —

Xk‘\

Qmnn [Trlnlnmn’(P)Trmn(ﬁsca)ﬂmn’(ﬁinc)
T8 (P (97, ()

+ T (PYT0 ()T, (97)

+ T (P) Ty (9%, (B7)], - (24)

SlZ nsca Alnc) —

|~
M
Ms
M

'=1 m=-min(n,n’)
T (PY Ty (95 T (97)
+ Tlenmn (P)Ty (0T (1)
+ T (P) T () T (917)
+ T (P) Ty (9% 10, (9],
(25)

. » o min(n,n’)
E 2 X
n=1n'=1 m—*min(n n')
Qnnn [ mnmn (P)Tmn({)sca)’n-mn (ﬁmc)
+ fr%llnmn (P)Trmn(ﬁsca)wmn’(ﬁmc)
mnmn’(P)Tmn(ﬁsca)Tmn’(ﬁinc)
+ Y?nnmn (P)Trmn(ﬁsca)'rmn (ﬁmc)] ’
(26)

sca A 1nc) j—

Sh(A

Xk‘\

min(n,n’)

(ﬁsca AlnC) _ = 2 E E

n=1 n'=1 m=—min(n,n’)
o [T ()T () T (377)

+ Tfnnmn (PYTT (3T, ()

+ T (P (851, (87)

+ T (PYTT ()1, (97T,

27)
where
o en+nen +1) 77
e = 2 [n(n +1n'(n’ + 1)]
X explim(¢** — ¢™)], (28)
by 3
@) ="y = W) )

and d7,.,, (¥) are Wigner d functions.”
Note that the amplitude matrix is often expressed
in terms of associated Legendre functions:

(n + m)!
(n —m)!

rather than in terms of Wigner d functions (see, e.g.,
Ref. 2), although it is well known that the numerical
computation of associated Legendre functions with
large m and n is unstable and leads to overflows.10
However, the computation of the Wigner d functions
by means of the upward recurrence relation?

2]1/2dn+1(ﬁ) _

1/2
P (cos V) = (—1)"'[ ] m(®),  (30)

[(n+1)*— (2n + 1)cos 9d},,(9)

— \n? = md ) (3D

and the initial conditions

dig, ' () =0, (32)
dr () =A4,,(1 — cos®y)™?, (33)
A=l A —a|Zm*tl " (34)

0~ 4 m+1 — m 2(1’)’1, + 1)

is numerically stable and efficient. The function

Tn(D) can then be found from

Tn(¥) = {=(n + 1)\n? — m*dz (D)

(2n + 1)sm 0]

+[(n + 1) — m*12dg (9)). (35)

Many practical aspects of T-matrix computations are
discussed in Ref. 11.

6. Numerical Scheme

Assuming that the scattering particle is rotationally
symmetric and that the axis of symmetry is directed
along the z axis of the particle reference frame, we
can summarize the numerical scheme for computing
the amplitude matrix for given 917¢, @i, 95, 5 «,

B, and vy = 0 as follows:

e Calculation of 9¢, @i, 95 and ¢§* by Eqgs.
(9), (20), and (21), .
e Calculation of the matrix B(a,B,y = 0) by Eq.

(22),
o Calculation of the matrices &(9"°, ¢i"%), G(95°2,

9%, & 1D, ¢, and & MO, o) by Egs. (1)
and (16),
e (Calculation of the matrices p(7

“HA% «, B, ) by Eq. (14),
« Calculation of the matrix S” (D52, 5% OB, op°

by Egs. (24)—(27),
o Calculation of the matrix S(95®, ¢5°?; 9irc, pine,

a, B, 0) by Eq. (8).

7. Benchmark Results

Ainc,

b (x" B’ '\/) and

In this section I present the results of T-matrix com-
putations for the following four rotationally symmet-
ric particles:
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Fig. 3. Thick curve, the shape of the generalized Chebyshev par-
ticle used in the computation of expression (40); thin curve, the
equal-volume sphere.

e prolate spheroid with an aspect ratio of 2,

e circular cylinder with a length-to-diameter ra-
tio of 2,

¢ Chebyshev particle with degree 4 and deforma-
tion parameter 0.1,6:11

e generalized Chebyshev particle with shape
given by

n=0

N
r(9, @) = r0{1 + > ¢, cos(nﬁ)} , (36)

with N = 10, ¢, = —0.0481, ¢; = 0.0359, ¢, =
—0.1263, c¢3 = 0.0244, ¢, = 0.0091, ¢; = —0.0099,
cg = 0.0015, ¢, = 0.0025, ¢g = —0.0016, ¢y =
—0.0002, and ¢;, = 0.0010 (Fig. 3).

Note that generalized Chebyshev particles are of-
ten used to describe the shape of distorted rain-
drops.4+1213 The surface-equivalent-sphere radius
for the first three particles and equal-volume-sphere
radius for the fourth particle is 10 pm. All particles
have the same refractive index, 1.5 + 0.02i, and the
same orientation with respect to the laboratory ref-
erence frame, given by « = 145° and B = 52°. The
directions of the incident and scattered beams rela-
tive to the laboratory reference frame are given by the
angles 9;'¢ = 56°, ¢, = 114°, ;5% = 65°, and
¢ 5% =128°. The wavelength of the incident light is
6.283185 pm. The respective amplitude matrices
(with elements given in micrometers) are as follows:

—5.0941 + 24.402; — 1.9425 + 1.9971i | 37)
—1.1521 — 3.0978; — 6.9323 + 24.748: |’
—1.727 + 19.706i — 0.562 + 0.247; | 38)
—2.013 -2.398; —3.088 +20.401; |’
45123 + 18.092i  — 1.6350 + 3.5274i | 39)
—3.0970 — 0.9215;  3.2658 + 18.617; |’
11.307 + 9.6184i  — 2.6519 + 2.3589; | (40)
—4.9044 — 0.6241:  9.9947 + 11.295: |
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These numbers are expected to be accurate to within
+2 in the last digits given.

To provide an additional test of the accuracy of the
computer code for particles in a fixed orientation, I
used it to calculate the elements of the scattering
matrix for a uniform orientation distribution by nu-
merically evaluating the respective angular inte-
grals. These results were then compared with those
rendered by the code based on an analytical averag-
ing method for randomly oriented particles.1%-14¢ In-
asmuch as the latter technique completely avoids the
evaluation of the amplitude matrix for specific parti-
cle orientations and illumination and scattering di-
rections, it provides an excellent independent check.
The perfect agreement found (five and more signifi-
cant digits) suggests that both codes provide high
numerical accuracy and can be used in practical ap-
plications as well as sources of benchmark results for
testing various numerical techniques.

8. Summary

In this paper we have derived general formulas that
can be used to compute the amplitude matrix for an
arbitrary orientation of a nonspherical particle and
arbitrary directions of illumination and scattering
with respect to the laboratory reference frame, pro-
vided that the electromagnetic scattering problem
can be solved in the particle reference frame. These
formulas become especially simple for rotationally
symmetric particles and have been used along with
the T-matrix method to compute benchmark results
for four dielectric, rotationally symmetric particles in
a fixed orientation. The FORTRAN computer code is
publicly available on the World-Wide Web at http://
www.giss.nasa.gov/~crmim in both the double-
precision and the extended-precision versions. The
former version is significantly faster, whereas the
latter version can be applied to significantly larger
particles.?:11

An important advantage of the T-matrix method is
that the T matrix for a given nonspherical particle
needs to be computed only once and can then be used
for any directions of incidence and scattering and for
any orientations of the particle with respect to the
laboratory reference frame. This simplicity of the
method allows one to easily calculate orientationally
averaged extinction and phase matrices entering the
general vector radiative transfer equation (see, e.g.,
Chap. 1 of Ref. 1 and Refs. 2—4). Of course, addi-
tional averaging over particle shapes and sizes will
require a separate computation of the 7" matrix for
each particle species.

I thank Timo Nousiainen and two anonymous ref-
erees for their comments on an earlier version of this
paper and Lilly Del Valle and Nadia Zakharova for
help with the graphics. This research was spon-
sored by the NASA Radiation Science Program man-
aged by Robert Curran.
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